Peristaltic Pump Wear Factors

Let’s be honest, we all know that simpler is better. The simplicity of a peristaltic style metering pump makes it a very reliable method for injecting a wide variety of chemicals into water treatment applications. Understanding the variables that result in wear on the pump components, especially wear to the pump tube assembly, can assist the reader in properly specifying the pump for a specific application.


Peristaltic pump technology


The human body uses “peristalsis” action to move food through the digestive tract. The wave-like muscle contractions progressively squeeze the digestive tract, essentially “pushing” the food through. It doesn’t get any simpler than that.


One of the greatest benefits of a peristaltic pump is its functional simplicity. Peristaltic pumps utilize a circular pump “head” and simple rotating roller that is designed to pinch the tubing and gently squeeze the fluid through specially designed tubing, as shown in Figure 1.


Figure 1: Typical peristaltic pump


They can effectively pump both fluids and gasses, eliminating the possibility of siphoning, vapor locking or loss of prime even when operating at very low output rates. Nearly continuous output results in a finer dispersion of chemical in the piping system when compared to pulsating type pumps such as diaphragm pumps. Figure 2 shows the near continuous output of chemical in the flow stream when using a peristaltic pump versus the interrupted chemical dispersion when using a diaphragm pump.




Figure 2: Intermittent vs. continuous flow



Fewer components result in very low maintenance costs when compared to the cost of rebuilding more complex pumps that require a large number wetted components such as metal springs, o-rings, valves, check balls, etc.


Commonly called a squeeze tube pump, the new generation of peristaltic chemical metering pump is quite different from the low-pressure laboratory pumps most people are familiar with seeing in a hospital setting. These industrial workhorses are now capable of pumping aggressive chemicals such as 12% sodium hypochlorite (chlorine), 50% sodium hydroxide, 97% sulfuric acid, and 85% phosphoric acid against system pressures up to 125 psi. Some models include such features as tube failure detection systems, flow verification sensors, and sophisticated control electronics for PLC interface and connection to SCADA systems.



Pump System Components


For analysis purposes, the peristaltic pump assembly can be broken down into five main components; 1. pump tube, 2. pump head and roller, 3. motor, 4. control electronics and 5.motor/electronics housing. Note that in some models, the control electronics (VFD, motor starter, PLC, etc.) are housed in a separate enclosure.



Variables to tubing wear


Many manufactures rate the life of their tubing by the number of effective operating hours before failure. While this rating may be effective for comparing the life of tubes used in the same pump under a specific set of operating parameters (for example; pumping water with a specific pump head type, at 0 psi, at a fixed RPM), there are many variables that will affect the number of hours a given tube will last in an actual application. Care should be taken to specify the pump components and operating parameters to achieve the greatest tube life possible in an application.

  • Tubing materials – The tubing material must withstand the chemical being injected, return to its original shape after many thousands of occlusions (compressions), and operate at the required system pressure. Specifying the optimum tubing material is critical for a successful application.
  • Chemical resistance – Chemical incompatibility will result in a breakdown of the tubing material properties, often manifested as a change in the stiffness of the material, either softening or hardening. In most cases, chemical resistance problems will be apparent within the first few days of use. However, in some cases, the chemical will attack the tubing material slowly over a long period of time, reducing the life of the tube.
  • Dimensions – Larger tube diameters and thinner wall thicknesses will generally result in reduced tube life expectancy.
  • Material properties – The physical properties of the tubing material will greatly influence not only its suitability for general use in a peristaltic pump, but also the amount of time the tube will last in a particular application. The peristaltic pump tube must be capable of precisely returning to its original shape many thousands of times after being squeezed by the roller. Many tubing materials lack this memory making them unsatisfactory for peristaltic pump applications. Tubing manufacturers offer a variety of tubing formulations, many of which are suitable for use in peristaltic pumps and many which are not. The end user must be cautious when selecting the tubing material for the application. Most pump suppliers will either offer assistance with the tubing selection or offer pre-assembled “tube assemblies” designed specifically for their peristaltic pumps, greatly reducing the possibility of miss-application.


  • System pressure – The pressures acting on the tubing will directly affect the tube’s life. Both the inlet and outlet pressures should be considered and particular attention should be paid to “hidden” variables that can add to the system pressure such as piping system components and fluid viscosity.
  • System pressure – The most obvious (and perhaps most influential) variable affecting tube life is the piping system pressure. But often, system components and installation factors that can increase the pressure at the pump tube are overlooked. For example, most manufacturers recommend installing a check valve in the discharge piping directly after the pump tube to prevent the system fluid from flowing back through the pump during routine pump maintenance or pump tube rupture. A spring loaded check valve or back pressure valve will increase the pressure at the pump tube by a value equal to the cracking pressure of the valve. For example, if the system pressure is 50 psi and the back pressure valve is set at 20 psi, the effective pressure at the pump tube is 70 psi. Therefore, valves with high cracking pressures should be avoided.
  • Another often overlooked variable that can increase the pressure at the pump tube is the physical distance from the pump to the point where the chemical is injected into the system, especially important to consider when injecting viscous fluids.  The pressure at the pump tube will increase as the distance from the injection point increases, the chemical viscosity increases, and the discharge-piping diameter decreases. Imagine trying to drink a thick milkshake through a skinny, 100 foot straw! Small diameter orifices in fittings should also be avoided when pumping viscous chemicals.


  • Number of occlusions – The tube life is affected by the number of times the tubing must be pinched (number of occlusions) in order to pump a given amount of chemical. Reducing the number of occlusions will increase the life of the tube. Four variables affect the number of occlusions required to inject a given amount of fluid; the diameter of the tubing, the diameter of the pump head, the number of rollers on the roller assembly (occlusions per revolution), and the motor rpm. Some manufacturers use the total number of occlusions, rather than time, when estimating their tube life expectancy.
  • Tubing diameter – A larger diameter tube will inject more chemical per occlusion (trap more chemical between two pinched rollers) than a smaller diameter tube. Therefore, a large tube can output more chemical with less occlusions, resulting in less wear, than a smaller tube.
  • Pump Head Diameter – Similar to the tubing diameter, the pump head diameter will affect the amount of chemical per occlusion. Larger diameter pump heads will result in more chemical being pumped per revolution.
  • Number of rollers – A given peristaltic pump model may have anywhere from one (offset cam type roller) to six or more individual rollers which squeeze the tube, pinching off the captured fluid and delivering it to the discharge end of the pump tube. Multiple rollers per assembly result in slightly smaller volumes of chemical injection per revolution, less pulsation and a reduced likelihood that an individual roller will wear out resulting in lost pumping capability. However, since tube life is directly proportional to the number of times the tube is pinched per revolution, the cost associated with the higher number of rollers is tube life.
  • Motor rpm – Unlike many types of pumps, peristaltic pumps are capable of operating at very low revolutions per minute (rpm) while maintaining very high accuracy, repeatability and priming capability. Therefore, to increase tube life, specify the pump so that the typical operation of the pump is at the lower end of the operating output adjustment range, resulting in the fewest number of occlusions. The maximum possible rpm of a specific pump model will vary from manufacturer to manufacturer with maximum motor rpm of 650 being not uncommon, though at this high rpm, tube life will be greatly diminished. Some pump models have effective turndown ratios of up to 10,000:1 resulting in a minimum effective rpm of 0.01!


  • Amount of tubing squeeze – Simply pinching off (occluding) the tube is not enough, the rollers must squeeze the tubing the exact amount required to ensure that the fluid being pumped is effectively trapped in the tubing and delivered to the injection point. Factors such as system pressure, suction lift, fluid viscosity, tube material, and others will affect the amount of squeeze required for a particular application. If the tube is under-squeezed, the fluid can escape or flow backward toward the suction side of the pump tube when the roller rotates in the head. This can occur when the pump is operated against a higher system pressure than recommended. If the tube is squeezed too much, it is being subjected to more force than is necessary and tube life will be diminished. Properly matching the roller design with the type of tube being used will result in the most efficient pump design and longest tube life for a particular application. Figure 3 shows the squeeze action of a peristaltic pump.

Figure 3: Progressive squeeze action with few components


Pump Head and Roller Design

The roller diameter, roller materials, type of bearing surfaces, and pump head design can also affect the life of the pump tube as well as the life of the roller assembly.  Schematic of a pump head is shown in Figure 4.
Figure 4: Schematic of pump head

Roller diameter – A large diameter roller will pinch off a greater surface area of the tube while rotating, resulting in lower tube life; however, large rollers will rotate fewer revolutions per roller assembly revolution, potentially resulting in longer roller life.

Roller bearings – The roller must rotate on a shaft, therefore the type and design of the bearing surfaces can increase or decrease the life of the roller. The design of the bearing surface can also assist in preventing chemicals and debris (from tubing surface wear) from entering the roller axle area causing drag on the roller.

Roller material – The roller assembly materials of construction should be of sufficient strength to withstand the repeated compressions of the pump tube while offering resistance to the chemicals that may potentially be spilled in the pump head area. The roller assembly must also have the dimensional stability to withstand variations in ambient temperatures and rotational forces without affecting the amount of squeeze on the pump tube.

Pump head – As with the roller assembly, the pump head materials of construction must also withstand any spilled fluid that may enter the head. The diameter of the head will also affect the amount of fluid pumped per revolution, with larger pump heads discharging more chemical per revolution than smaller pump heads.

All of the parameters such as system pressure, number of occlusion, tube chemical resistance, tube squeeze and roller bearing inefficiency impact tube life as shown in Figure 5.
Figure 5:  Components affection tube life

Chemical spills – If left alone, the pump tube will eventually fail. Depending on the operating pressure, type of tube, and many other factors, the chemical may leak out slowly or squirt out dramatically. Manufacturers offer a number of different methods for protecting the roller assembly, pump head and area surrounding the pump from chemical spills. Some manufacturers include drain ports to remove chemical, float switches to shut down the pump when a spill occurs and a cup fills, and electronic sensors to shut down the pump when chemical is detected in the pump head area. Some methods are more effective at quickly turning off the pump and reducing the amount of chemical spilled. Based on the effectiveness of the method, the pump head and roller assembly may incur damage resulting in drag on the roller assembly and reduced roller and tube life.

A variety of motors ranging from small, fractional horsepower shaded pole AC gear motors, to large C-frame AC and DC powered gear motors are used with peristaltic pumps. Many peristaltic pump manufacturers include the motor as part of the pump assembly which helps take the guesswork out of specifying the correct motor to use for a given pump assembly. As with any pump, care should be taken to properly specify the motor for the pump and the intended operating environment.

Control Electronics

The control electronics must be carefully selected to properly control the motor as well as providing for any remote control and communications capabilities such as analog input motor speed control, analog output pump speed feedback to SCADA, alarm outputs, pump status, etc. As with the motor, many pumps include the control electronics as part of the assembly.


Typically, a peristaltic pump enclosure protects the motor and control electronics from the operating environment while the pump head area of the pump is either unprotected or sealed in its own enclosure separate from the motor and controls. Manufacturers offer a variety of enclosures for the motor and control circuitry ranging from small plastic housings to explosion proof metal enclosures. Many pumps are supplied without any enclosure at all. As with the motor and control electronics, the user should take care to specify the pump system with a proper enclosure that is designed to provide the protection needed for the application environment, as shown in Figure 6.
A3V Metering Pump
Figure 6: Fully enclosed peristaltic pump


A typical setup of peristaltic pumps with integral motor and controller provides the necessary chemical feed to the cooling water system is shown in Figure 7.
Figure 7: Peristaltic pumps providing chemical feed


Many variables affect the service life and maintenance requirements of a peristaltic pump. By carefully assessing the application, the user can properly specify the pump and components to minimize service and maintenance requirements and maximize the life of the pump.



Mr. Bill McDowell is a Sales Engineer with Blue-White Industries and has over 29 years with the company.  He has held various positions with Blue-White Industries including Project Engineer and Director of Engineering.  Additional information can be obtained from Blue-White Industries at, 5300 Business Drive, Huntington Beach, CA 92649. Phone 714-893-8529, Fax 714-894-9492, or;


Selecting the Right Metering Pump

A search for technology to increase system accuracy, reduce maintenance costs, and enhance an advanced SCADA system led a Rancho Cucamonga, Calif., utility to replace its diaphragm-type pumps and gas–chlorine injection system with peristaltic pumps.

BY Bill McDowell

Built in 1989, the 60-mgd Lloyd Michael Treatment Plant (LMTP) in Rancho Cucamonga, Calif., treats raw water from the California Aqueduct system to provide drinking water for a multicity service area. In November 2012, the Cucamonga Valley Water District began upgrading the plant to enhance treatment processes and comply with new federal water quality standards. The upgrade is expected to be completed by spring 2014.

As part of the upgrade, the anionic and cationic polymer, ferric chloride 43 percent, sodium hydroxide 50 percent, and gas–chlorine chemical-feed systems will be replaced. Jerry Griffith, plant mechanic, began looking for new technologies to increase each system’s accuracy, reduce maintenance costs, and integrate operations into an advanced supervisory control and data acquisition (SCADA) system.

The plant’s diaphragm pumps and gas– chlorine injection system had a variety of problems that needed to be reduced or eliminated during the upgrade. Challenges included system maintenance, chemical metering accuracy, ease of use, SCADA system requirements, system flexibility for emergency operations, and limited space requirements.

The pulsating diaphragm pumps required frequent adjustments and maintenance. “They always needed cleaning, the oil needed to be replaced frequently, and the stroke length needed to be adjusted manually,” said Griffith.

The pulsating diaphragm pumps were also hard on the piping system, causing occasional leaks. Piping and ancillary components, such as pulsation dampeners, calibration columns, and pressure regulator valves, also required additional maintenance and floor space and made the system more complex. In addition, the diaphragm pumps weren’t providing much information to the SCADA system.

As part of the upgrade, the gas–chlorine injection system will be replaced with a liquid chlorine and ultraviolet (UV) system.

The gas system is expensive to maintain, costing $10,000 per year for scrubber and injector cleaning and maintenance. Using lower-concentration liquid chlorine and UV technology will help the plant maintain lower trihalomethane (THM) levels. The new liquid chlorine system, which uses peristaltic pumps, will be installed in the chemical room. When the gas–chlorine system is removed, the area will be transformed into a much-needed workshop.

The new peristaltic pump system is much smaller and requires less space than the old diaphragm pump system. In addition, the controls are built into the pumps to optimize efficiency.CHOOSING THE RIGHT CHEMICAL PUMP
After reviewing and testing various types of pumps on the market, LMTP personnel chose peristaltic-style metering pumps to replace the diaphragm pumps in all applications, including gas–chlorine injection, for several reasons.

Low Maintenance.  Although peristaltic pumps require periodic tube changing, such maintenance is predictable and inexpensive. For example, Griffith replaces the pump-tube assembly of the new anionic polymer system every six months, regardless of wear.

Ease of Use.  The peristaltic pump is easy to use, and the pump-tube assemblies can be replaced quickly and easily. In addition, the menu-driven software and display allow operators to quickly adjust the pump’s many electronic features.

Higher Accuracy.  Even when pumping high-viscosity polymers, the peristaltic pumps are accurate to within about 3 percent over their operating output range and over the life of the tube. The SCADA system can easily set and maintain 1 ppm without requiring operators to make manual adjustments.

SCADA Ready.  The peristaltic pumps communicate with the SCADA system better than the diaphragm pumps did. Now more process information is available to the SCADA system, including multiple alarm outputs and output volume data. In addition, the system can react more quickly to commands, such as a quick shutdown of the system. The highly automated plant is monitored and controlled in real time using handheld devices. Rob Hills, water treatment superintendent, can now access and control anything in the plant with his smart phone or personal digital assistant.

Flexibility.  The peristaltic pumps are self-contained. The motor and controller are located inside the pump enclosure for portability. The pump’s small size and light weight allow operators to move the pump to a remote location if treatment is required at a different injection point. For example, if a system failure requires a particular section of pipe to be shutdown, the pump can be relocated as required and run manually to prevent plant shutdown. With the San Andreas Fault less than a mile away, LMTP operators are alert to potential damage to piping systems from earthquake activity. They try to maintain as much system flexibility as possible.

Space Requirements.  The peristaltic pumps occupy a smaller footprint, further increasing efficiency in the chemical room and reducing maintenance. The entire gas chlorination system will be replaced by peristaltic pumps and relocated to the chemical room with the other systems.

Quiet Operation. The new peristaltic pumps produce significantly less noise in the chemical room. Operators didn’t realize how loud the diaphragm pumps were until they were gone, according to Griffith. Less noise helps reduce the stress of working in the chemical room for extended periods.

Consistency. With the features and capabilities to handle all applications, the peristaltic pumps reduce the complexity and amount of operator training required as well as the number of spare parts necessary for system maintenance.

Customization.  Custom designed by LMTP staff, the new anionic and cationic polymer, ferric chloride, and sodium hydroxide chemical systems feature

  • a plastic texture-coated flooring grate system over the containment area.
  • a below-grate flushing pipe system.
  • quick-release polyvinylidene fluoride cam-lock inlet and outlet pump fittings.

Peristaltic pumping technology has simplified maintenance and helped LMTP personnel function more efficiently, maintain and upgrade plant equipment, and comply with federal water quality standards.


Bill McDowell is a sales engineer with
Blue-White Industries (,
Huntington Beach, Calif.

Article available on Opflow Magazine’s Website:

Peristaltic Pumps Excel in Chloramine Application

Maintaining the correct amount of chlorine for effective drinking water system disinfection in a large municipal drinking water system can be challenging. Piping system lengths, variable flow rates and demands, and other factors contribute to the difficulties in maintaining the optimum level of free chlorine throughout the entire system.

One method of increasing the length of time that the chlorine remains effective in the system is to add ammonia. With the addition of ammonia, chloramines are formed resulting in not only a more stable and longer lasting disinfecting residual than free chlorine, but also the additional benefit of a reduction in the amount of initial chlorine injection required and a similar reduction in unpleasant chlorine odor and taste.

Although the mixing of ammonia with chlorine to form chloramines is a safe and effective means to treat drinking water, the addition of ammonia can create a potential hazard if the chlorine is not present. The proper chlorine/ammonia ratio must be maintained to form the chloramines. For this reason, system designers are careful to select the most reliable injection system components possible that also allow for variable flow rate requirements and permit continuous monitoring and remote control by SCADA systems.

Chuck Boone, the Mechanical Maintenance Supervisor at the Irvine Ranch Water District (IRWD) in Irvine, CA, became concerned about the new IRWD reservoir management system (RMS) pilot project when the diaphragm pumps chosen for the chlorine injection task repeatedly failed. Although sensors in the system detected the failure and safely shut down the system, it became obvious that a more reliable chlorine injection pump system was required.

The cause of the diaphragm pump failures was traced to the pumps losing prime due to vapor locking. Vapor locking is caused by gases escaping from the fluid and building up in the pump head preventing the valves from operating correctly. This phenomenon commonly occurs when the pump is sitting idle, such as at night or when the system demands are low. The IRWD maintenance mechanics worked with the diaphragm pump manufacturers to install de-gassing valves and other devices that would permit the pump to automatically expel the built up gasses from the pump head, but these measures were unsuccessful. Looking for a better way to inject chlorine, the IRWD team turned their focus to peristaltic pump technologies.

A3V_Wet_Commonly called “squeeze tube pumps,” the new generation of peristaltic pump is quite different from the low pressure, non-industrial peristaltic pumps most people are familiar with seeing in a hospital setting. These industrial pumps are now capable of long tube life and output pressures to 125 PSI. Some models also include such features as tube failure detection systems, flow verification sensors, heavy duty weatherproof enclosures and sophisticated electronics for connection to SCADA systems.

Peristaltic pumps use a circular pump “head” and simple rotating roller design to gently squeeze the fluid through a piece of specially designed tubing. With no valves to clog, metal springs to corrode or ball seats to fail they can effectively pump both fluids and gasses, eliminating the possibility of vapor locking and loss of prime. A peristaltic pump’s output is not affected by changes in the system pressure (it therefore does not have a pump output curve) making its output much more consistent than a diaphragm pump.

Selection Considerations

In a chloramine application, it is critical that the ammonia pump inject at a proportional rate with the chlorine pump and automatically deactivate in the event of a chlorine pump failure. The new generation of variable speed peristaltic pumps meets the requirements for both the chlorine and ammonia pumps in a chloramine application.

Manufacturers of these pumps include many of the features used by large municipal water treatment systems such as scalable 4-20mA (analog) and high speed pulse (digital) input and output signals. These I/Os not only permit the SCADA system complete control of both pumps but they can also provide solutions for external data logging, remote diagnostics and driving multiple pumps and devices from the primary pump.

The scalable analog output signal provided the IRWD team a simple method for proportionally driving the ammonia pump directly off of the chlorine pump.

The pumps offer outputs to 33.3 gph, a 100:1 turndown ratio and continuous feed. With output pressure ratings to 125 psi and its ability to pump gases, they are suited for use in chlorine dosing applications.

Article Peristaltic Pumps Excel in Chloramine Application

Diaphragm Pumps Vs Peristaltic Pumps. What’s the best choice for you?

Diaphragm Metering Pumps

This type of metering pump will require you to be a bit more knowledgeable about the pump valves, as well as proper priming and adjustment characteristics. Once you understand the pump and work within its normal limits, you should be assured of a successful program.

  • A well maintained diaphragm metering pump will cost less to operate over time.
  • Diaphragm metering pumps are more energy efficient, using more motor torque on the foreword (power) stroke, but far less on the back stroke.
  • Overcoming line pressure is easier with properly sized diaphragm metering pumps.
  • Less danger of leakage – if a diaphragm metering pump is poorly maintained, it may lose its prime, but seldom leaks, or damages the surrounding area.
  • Cons

  • Diaphragm metering pumps operate best when the solution being pumped is clean, free from particulates. The reason; diaphragm metering pumps have check valves in the suction and discharge side of the pump head. If either set of check valves becomes fouled, the pump will not meter accurately, and loss of prime will occur.
  • Difficult to prime against pressure -These pumps Prime best when there is little to no back pressure. Some pumps are fitted with a bleed valve to aid in this challenge.
  • Difficulty priming with dirty check valves – Diaphragm pumps prime best when the valves (check balls) are clean, there is little to no back pressure, and the diaphragm stroke is on full / maximum setting.
  • Difficulty priming when the stroke (feed rate adjustment) is on a low setting. Most diaphragm metering pumps have a diaphragm stroke (feed rate) adjustment, and some also have a motor speed adjustment. Priming is best achieved when the stroke adjustment is above the 60% area. These adjustments can be confusing, try to minimize your variables as much as possible. Avoid adjusting the diaphragm stroke length to low, the pump loses efficiency. Keep your diaphragm stroke above 40% if possible; most pumps are just more efficient with longer stroke lengths.
  • Peristaltic Metering Pumps

    Peristaltic metering pumps are a good choice when pumping dirty fluids that may contain trapped gases or particulate matter, into lower pressure systems. Newer peristaltic pump designs are capable of pressures to 124 psi.
    There are more tubing options available for modern peristaltic metering pumps, offering more chemical resistance and longer tube life.
    Tube failure has been well addressed with Blue-White’s Exclusive, Patented Tube Failure Detection system (U.S. patents 7,001,153 and 7,284,964).
    These pumps are initially easier to begin using than diaphragm metering pumps.

  • They work well with high levels of particulate in the solution being metered (un-Dissolved solids), because there are no check balls to foul.
  • Feed rates are less affected by pressure, or the nature of chemical being metered.
  • Peristaltic pumps have no-hassle priming and excellent suction.
  • Cons

  • Constant squeezing of pump tube weakens (degrades) the tube over time, and the feed rate is slowly diminished.
  • Squeezing the pump tube requires the drive motor to be under a constant load (similar to a boat motor), so the pump uses more power.
  • When pump tubes not regularly changed, or the injection point not serviced, the pump tube may leak. Pump tubes begin to wear the moment the pump is started, and continue degrading until worn out completely. Most manufactures rate the tubes in hours. Users must be cognizant of the total number of hours the pump has operated. This is a common problem with peristaltic pump users, generally operators underestimate how many hours the pump has been in operation.
  • Peristaltic & Diaphragm metering pumps –

  • Diaphragm Pumps – Make sure the pump wetted parts are compatible with the chemical you are pumping. The pump head, valves and diaphragm are commonly referred to as, “wetted end”, and they need your attention. Make sure your wetted end is compatible with the chemical you are pumping.
  • With Peristaltic pumps make sure the pump tube, and standard fittings are compatible with your chemical. Manufacturers will list the materials that make up wetted parts. The customer needs to do some basic research on chemical compatibility, no one single material works with everything.
  • Read the pump curve, the pump output will not be the same at atmospheric pressure, as it will be at 50 psi, as line pressure increases your feed rate will decrease. A pump curve will help you, but remember the pump curves provided are done in laboratory testing pumping pure water. Your solution will have a different viscosity, and specific gravity than water. This will affect your output.
  • Summary –

    Diaphragm metering pumps excel at pumping clean, aggressive chemicals into high-pressure systems, and require very little maintenance. A variety of wetted parts materials are available for chemical resistance. However diaphragm pumps can lose their prime, and can be difficult to prime, especially if the fluid is dirty or contains trapped gases.
    Peristaltic metering pumps excel at pumping dirty fluids that contain trapped gases or particulate matter into lower pressure systems. Modern peristaltic pump designs are capable of pressures to 124 psi. Peristaltic pumps will require periodic changing of the pump tube.
    Research and a good understanding of both the installation requirements, and the pump’s operating parameters and maintenance requirements, are vital to choosing the best pump for your application.

    A-100N - Digital Controls

    A-100N – Digital Controls

    Paddlewheel Flowmeters – Getting the Job Done

    Paddlewheel Flowmeters
    Getting the Job Done


    Paddlewheel flowmeters are easy to install and operate, resulting in a very low overall cost of ownership. Relatively low cost paddlewheel style electronic flowmeters are proof that high cost doesn’t always mean better value.

    The components of a system must be able to perform the required task – get the job done – and meet the other physical requirements of the application. Excess capability, features, and accuracy are a waste of money. You will get the most value for your money by purchasing system components that meet the demands of the system without being overkill. While expensive, high technology solutions may be available for your application; low cost paddlewheel flowmeters offer high accuracy solutions to many flow system applications – not just displaying the flow rate and the total accumulated flow amount.



    Paddlewheel flowmeters are used to accurately measure and dispense preset volumes of water or other chemicals.

    Water Dispensing System

    Water dispensing systems commonly use preset cycle timers to dispense water. When the timer is activated, the system begins dispensing water until the preset time cycle times out. These preset (fixed) cycle timers can result in accuracy problems because they do not actually measure the flow rate! Any problem in the system that results in a change in the flow rate will result in an error in the amount of water dispensed. Some examples include worn pump components and changes in the system pressure, either of which can result in changes in the pump output. The cycle timer control cannot compensate for various flow rates because it is not measuring the flow rate.

    Paddlewheel sensors actually measure the amount of water dispensed. When the dispensing system is activated, the electronic flow controller starts the pump and opens the correct dispensing valve. The sensor begins to output electrical pulses. These pulses are then counted by the electronic flow controller. Changes in the output flow rate of the pump will not affect the sensor count. When the correct amount of water has been dispensed, the dispensing valve is closed and the pump stopped.


    Paddlewheel flowmeters can control chemical metering pump outputs.


    Chemical metering pumps are used to inject chemicals such as chlorine and acids into water systems. The chemicalmust be injected into the system at the proper rate to achieve the correct water/chemical proportions. Depending on the application, too much or too little chemical can result in series problems. In a system that has changing water flow rates, a fixed feed rate chemical injection metering pump alone is not capable of reacting to changes in the flow rate of the system. Paddlewheel flowmeters can be used to start and stop inexpensive, fixed feed rate metering pumps resulting in the proper amount of chemical injection. When the meter has measured a specified volume of flow that has passed through the system, the chemical pump is turned on for a pre-programmed amount of time. This simple system results in a pump on time (chemical) per flow volume (water) ratio.

    Variable speed pumps are used when near continuous injection of chemical is required. These pumps can be controlled directly by the sensor’s output signal. The high speed sine wave signal can be input directly into the pump’s electronic speed control. The pump speed, and therefore the amount of chemical injected, is programmed to react to changes in the frequency output by the flow sensor. A minimum pump speed is programmed for a frequency and a maximum pump speed is programmed for another frequency resulting in a speed:frequency ratio (pump output rate per flow rate).


    Paddlewheel flowmeters can verify chemical injection has occurred.

    Paddlewheel sensors are capable of measuring chemical metering pump output rates as low as 1 ounce per minute. When installed on the metering pump, the flow sensor can be used to alert the system operator that an error exists in the system. Some metering pumps include electronics that react to the paddlewheel output signal. If the metering pump should fail to inject chemical due to a pump malfunction, clogged fitting, exhausted chemical container, etc., an alarm output is triggered.

    alarm graphic3


    Paddlewheel flowmeters can monitor system flow rate.


    When a system’s flow rate is critical, a paddlewheel flowmeter can be used to alert the system operator if the rate increases or decreases out of a programmed range. The electronic display can be programmed with a high and low rate amount which will trigger an alarm output signal if reached. The alarm can automatically reset or latch. Trigger and release values can be set, with hysteresis, which will eliminate “flickering” that can occur when the flow rate is at the alarm value.


    Paddlewheel flowmeters work best with clean fluids. Particles and debris can prevent the paddle from spinning properly.

    Install the pipe fitting in a location that includes a proper length of straight pipe before and after the meter. Because the paddle is inserted only a small distance into the flow stream, the flow stream must be a consistent velocity across the entire inside pipe diameter to obtain an accurate reading. The straight length of pipe will allow any swirl patterns in the flow stream to dissipate before contacting the paddlewheel. Swirl patterns can be caused by obstructions such as an elbow, tee, pump, etc. The minimum straight length of pipe required will depend on the type of obstruction before the paddlewheel. The absolute minimum is typically ten times the nominal pipe size before the meter and 5 times after. Thus, a 4” pipe would require a minimum of 40” (10 x 4) of straight pipe before the paddlewheel and 20” (5 x 4) after. Refer to the manufacturers instructions for specific requirements.

    Flow disturbances4


    Paddlewheel flowmeters may not function properly with high viscosity fluids. High viscosity fluids will tend to produce a laminar type flow profile. In a laminar flow profile, the center of the flowing fluid is moving faster than the outer edge. A turbulent flow profile, where the fluid velocity is the same across the entire pipe diameter, is required for accuracy. The fluid’s Reynolds Number must be greater then 4000 to ensure a fully developed turbulent flow profile. The Reynolds Number is a dimensionless number that combines the effects of viscosity, density, and flow velocity to identify either a turbulent or laminar flow profile.

    Reynolds number5


    The pipe must be full of water at all times. When the system starts and stops, any air in the line may lead to an erroneous reading.

    Size the meter to work within the published operating range. Although the meter may read at flow rates other than published, the meter may not be accurate at these rates.

    Be sure the saddle is properly installed. Saddle installation, pipe size, alignment and adjustment, is critical to an accurate reading.


    Paddlewheel flowmeters consist of three primary components; the pipe fitting, the paddlewheel sensor, and the display/controller. These components can be purchased separately or as a package to meet the particular requirements of the application. The paddlewheel sensor is designed to be inserted into the pipe fitting. Approximately one half of the paddle protrudes into the flow stream. Fluid flowing through the pipe causes the paddlewheel to spin. As the magnets that are imbedded in the paddle spin past the sensor, electrical pulses are produced that are proportional to the rate of flow. The manufacturer publishes the number of output pulses produced, per volume of flow, for each specific pipe fitting. This number is called the K-factor.

    PIPE FITTINGS – Various pipe fittings styles are available. Some fitting styles are designed to install directly into the pipeline using various connection methods such as male or female threads, socket weld, socket fusion, and butt fusion joints . These “in-line” fittings are available in a variety of materials such as PVDF, polypropylene, and stainless steel. They are available with and without union connections. Because the manufacturer can control the inside diameter of the fitting, in-line fittings are available in a variety of operating flow ranges to accommodate various applications.

    Saddle style fittings are designed to mount directly on an existing pipe. The saddle is installed by simply drilling a hole in the pipe and clamping the saddle onto the pipe. Cutting the pipe and installing special adapters is not necessary. Saddles are available in a variety of materials.

    PADDLEWHEEL SENSORS – The Paddlewheel sensor consists of the paddlewheel with its imbedded magnets and the electronic sensor. Manufacturers offer sensors in a variety of materials to meet most applications. Two types of sensor outputs are available, AC coil and Hall Effect.

    AC Coil sensors generate an AC sine wave that is proportional to the flow rate. Because they generate their own power, these sensors do not require external input power. The signal range for an AC coil type sensor is limited to approximately 200 feet due to possible noise interference and voltage drop.

    Hall Effect type sensors output a digital, current sinking, DC square wave that is proportional to the flow rate. Circuitry that is sensitive to magnetic fields is triggered by the spinning paddle. This circuitry requires external input voltage to operate. The signal range for a Hall Effect type sensor is approximately 1 mile.

    DISPLAYS/CONTROLLER – Flow displays and controllers are used to receive the signal from the paddlewheel sensor, convert the signal into an actual flow rate or flow total value, and display the values. The processed signal can now be used to open and close valves, start and stop pumps, indicate high or low flow rate alarms in the system, or transmit 4-20mA and TTL level pulse signals to external equipment such as a PLC, chart recorder, metering pump, etc.

    Paddlewheel flow sensors and display meters/controllers offer low cost solutions to a variety of water system applications.


    Bill McDowell is a Sales Engineer with Blue-White Industries. He has been with Blue-White Industries for 20 years and has also held the position of Project Engineer and Director of Engineering. Bill resides in Garden Grove, California with his wife Jana and their two children Jillian and Sean.

    For additional information, contact Blue-White Industries,
    5300 Business Drive, Huntington Beach, CA 92649.
    Phone 714-893-8529, Fax 714-894-9492,

    Paddlewheel Flowmeters and why they are popular

    paddleArticleCost of accuracy

    Those of us in the instrumentation industry know there is a simple rule; if you want higher accuracy, it will usually cost more money. Paddlewheel Flowmeters come very close to dispelling that rule. Due to modern technology, advanced plastics and metals, solid-state circuitry, and good old capitalism the high cost of accuracy has been challenged.
    With the use of computer-enabled testing facilities, paddle sensors are individually bench tested and are accurate to within 1% of the full scale range reading. The sensor’s flow parameters are then printed and packed with that particular Flowmeter. The key is the use of technologies that were simply not available some years back. It is important to note that although the paddle sensor is tested, and accuracy confirmed, installation variables can affect the meter’s ultimate performance. But that would be the case with most types of Flowmeters. Dollar for dollar, the paddlewheel Flowmeter simply gives you hands down, more accuracy for your dollar.

    Ease of installation

    Comparatively speaking, paddlewheel Flowmeters have distinct advantages over many kinds of Flowmeters. Paddlewheel style Flowmeters can be installed either horizontally or vertically, with flow in either direction, without compromising overall meter performance. Paddlewheel Flowmeters can be purchased complete with a sensor, digital display and in-line meter body (pipe fitting) which can be easily installed into a piping system. You can also purchase the meters with saddle mount type pipe fittings which are very convenient for installation on existing, larger pipe sizes where in-line fittings are prohibitive.

    Battery or AC operated

    Today’s Paddlewheel Flowmeters use advanced solid-state circuitry which can operate on common batteries eliminating the need for electrical connections. The technology has advanced to the point where batteries last for a minimum of one year. When the batteries are replaced, no harm is done to the factory settings. Paddlewheel Flowmeters have considerable capabilities such as batch process control, analog output signals and remote readouts. These full featured meters require a power source and are typically supplied with an AC/DC plug-in style transformer. Keep in mind the flexibility this meter offers the user.

    Versatile meter

    Paddlewheel Flowmeters are deserving of the attention they are receiving. While most applications are with water, paddlewheel meters also work remarkably well with viscous fluids, provided a fully developed turbulent flow profile exists. If the fluid’s Reynolds number is greater than 4000, the fluid we be a fully developed turbulent flow regardless of viscosity changes.



    7741.92 x ID x V

    ID = the pipe inside diameter in inches
    V = the flow velocity in feet per second
    Cst = the fluid viscosity in centistokes

    To maintain accuracy, the Reynolds number must be above 4000 over the entire flow range. Unlike variable area meters, paddlewheel meters are not affected by changes in the fluid’s specific gravity. Special calibrations are not necessary.

    Another compelling reason people are turning to paddlewheel style Flowmeters is their ability to have a remote readout. Paddlewheel Flowmeters easily permit the panel mount readout to be installed in the most desirous area, while the actual sensor is installed in an obscure area of the pipe system. For example, in any application, the paddle sensor can be installed in the proper location and the digital display can be remotely located in a more desirable location in the system such as on a centralized control panel.


    The meter’s paddle and axle are in direct contact with the fluid. Since the paddle will spin at a velocity that is directly proportional to the rate of flow, these components will wear over time. Meters which are operated at the high end of their calibrated flow range will tend to wear more than units operated at the low end. Because every fluid has different characteristics, it is difficult to estimate the life expectancy of these components. Some water (DI water), may be very aggressive while some water may be exceedingly hard or full of abrasives. The resistance of the components to the chemical being measured should also be considered. Axles and paddles are easily replaceable. A neglected paddlewheel Flowmeter will in time have degraded accuracy.

                The maintenance factor should not in any way deter using paddlewheel meters, just remember, turbine meters have the similar problems; rotameters also have to be maintained.  This is a case where the benefits far outweigh the cost.

    Maximize paddlewheel performance

    If your flow falls below one foot per second you should expect some accuracy challenges.  Avoid using paddlewheel Flowmeters for measuring very dirty fluid, or liquids with rocks or pebbles that could break or damage the paddle or axle. Follow the manufacturer’s installation recommendations regarding straight lengths of pipe.  If you cut corners, do not expect optimum performance from your meter.

    In summary

    Paddlewheel Flowmeters should be considered by anyone who requires above average metering accuracy where cost is a consideration. These meters are also recommended because they are easier than most meters to install, can measure flow in either direction and serve the intended purpose ofmeasuring flow.  Considering the overall cost of ownership, it is very difficult not to consider the paddlewheel Flowmeter.

    Following are some terms you might find useful. The more you understand how and why a Flowmeter works, the greater success you will have with your selection.

    K-Factor – The number of signal pulses generated per unit volume of flow. Example: 225 pulses per gallon.

    Reynolds Number – A dimensionless number that combines the effects of viscosity, density, and flow velocity which is used to identify either a turbulent or laminar flow profile.

    Specific gravity- (relative density) The ratio of the density of a fluid, at it’s temperature, to the density of water at a specified reference temperature.

    Feet per second of flow – The velocity of fluid flow in a pipe expressed as the number of linear feet of flowing fluid passing a given point in a pipe, per one second of time.

    Robin Gledhill, President
    Blue-White Industries
    Huntington Beach, CA, USA

    For permission to reprint article, please send a request via e-mail .

    Maximize Chemical Injector Pump Performance – Car Wash Industry


    There are two primary pump classifications that spawn a multitude of subgroups, or branches. Displacement and dynamic are both essential pumps that are used throughout the carwash industry. Displacement pumps include two important categories, and further sub-categories:

    1.) Reciprocating

    • Diaphragm
    • Piston

    2.) Rotary

    • Peristaltic
    • Screw
    • Vane

    Dynamic pumps also include two categories:

    1.) Centrifugal

    • Axial flow (impeller)
    • Radial

    2.) Special effect

    • Jet
    • Gas
    • Hydraulic

    Carwashes today use the majority of these pumps. Centrifugal pumps, which are an essential asset in low water pressure areas, are used for pumping large amounts of water.Piston pumps are important in water reclamation and reverse osmosis systems.

    Displacement style pumps, or more specifically reciprocating diaphragm, are the preferred way to pump carwash chemicals; rotary peristaltic pumps are also used for pumping specific chemicals.

    Delivery pumps

    These pumps are properly called displacement pumps. Remember, both reciprocating diaphragm and rotary peristaltic are often referred to, in the industry, as chemical dispensers, injectors, metering pumps, diaphragm pumps or chem-feeds.The rotary peristaltic is often referred to as a tube or squeeze-tube pump.

    Most modern carwashes come equipped with chemical injector pumps as standard equipment. These diaphragm pumps inject precise amounts of carwash chemical into the wash line. The chemicals used vary; they could be soaps or various waxes, drying agents or under-car cleaners.









    Displacement style pumps, being made here, are the preferred way to pump carwash chemicals.

    These diaphragm injector pumps are not standard off-the-shelf pumps — they are a hybrid variety. These special injector pumps are required to start and stop, in some cases, hundreds of times per day.They are also required to:

    • Handle a wide variety of chemicals
    • Be completely adjustable
    • Handle wet environments
    • Be field serviceable.

    Chemical injectors require periodic maintenance, with the amount of maintenance depending on the level of activity at the wash.

    Get better performance

    To maximizing your chemical-injector pump performance:

    • Avoid running chemical containers dry. While the pump may not be mechanically harmed, pumping air will cause the valves to build up a residue of dried chemical.
    • After changing out chemical containers, make sure the pump is primed and most air is purged out of the pump head.
    • Inspect and, if necessary, replace your diaphragm at least every six months. Also inspect the top and bottom valves — clean or replace as necessary.
    • Keep spare liquid ends (assembled pump head kits) handy. It’s far easier to replace a diaphragm and pump head complete with valves (usually just four screws) than it is to detail every o-ring and ball seat. Time is money.
    • Inspect your foot-valve strainer quarterly.
    • Chemical injectors are easy to prime when the discharge (pressure) line is removed or vented. After the pump is primed, reattach the discharge line to the top pump-head valve or close the vent relief.
    • Always wear eye protection when working on chemical injectors or when changing out containers.
    • Avoid changing chemical brands without researching the compatibility on your injector pumps.
    • A flow indicator installed on the suction tubing of your injector is an outstanding diagnostic tool. At a glance, you can see if the pump is working properly.


    Robin Gledhill, President
    Blue-White Industries
    Huntington Beach, CA, USA

    Variable Area Flowmeters offer Economy and Value

    There are many sophisticated ‘high-tech’ instruments available for flow measurement, but not all applications require the technology of those often costly instruments. In fact, in some applications simple flowmeters can offer many advantages over more costly and technical instruments. Flow rate is a result of the velocity of a fluid and volume. Although flowmeters may seem to be a modern invention, basic types were evident as far back as the early Roman era. They were often used for measuring water flow to households. The mathematical foundations of flow theory were evolved during the 17th century. Today there are many types of flowmeters, such as: variable area, positive displacement, ultrasonic, and mass flowmeters, just to name a few. Each type has its special features and there is no universal or perfect flowmeter that’s appropriate for all industries and applications. The right flowmeter for the job is the one that will perform effectively in that application, and at a reasonable expense. The variable area flowmeter offers many advantages over some more expensive and technologically advanced types, making it the meter of choice for many flow measurement applications.
    Tapered Tube
    The flowmeter is comprised of a vertically tapered tube through which the fluid to be measured is passed, from the smaller end of the taper and up to the larger end. As the fluid flows through the tube, it forces an indicator (float) upward. The clearance space between the float and tube increases as the float moves towards the top of the meter. This increasing area requires a larger amount of fluid to force the float higher. By varying the taper of the tube, the mass of the float, and the length of the tube, different flow ranges can be calibrated. The proper installation of the variable area flowmeter, as with all flow instruments, is critical to performance. It must be plumbed into a piping system correctly: that is, with the narrow part of the taper at the bottom.

    Typically printed onto or next to the tube is a scale with the flow increments / measurements. The flow rate can be read by matching the increments on the tube with the edge of the float.


    In recent years variable area flowmeters have become very competitively priced. Because these flowmeters have become more cost effective, more and more manufacturers of water treatment systems have begun including them as a standard accessory.

    A few industries where use of variable area flowmeters is common include:

    The makers of ultrafiltration equipment (reverse osmosis systems) use flowmeters to measure output through the membrane, and also to measure reject. Flowmeters play a critical role in helping to monitor the efficiency of the system.

    Ultra pure water is used extensively in the manufacture of printed circuitry (cleansing of computer chips, particularly). Flowmeters are used both in the manufacturing and management of deionized water.

    Solar-panel manufacturers recommend certain flow rates for optimum performance. Variable area flowmeters allow the installer and user to monitor flow economically, thus enabling critical process adjustments to be made.

    Flowmeters offer an advantage over pressure gauges in filtration systems because they measure actual flow; as the filter becomes saturated (full), the flow rate drops. Just a glance at the flowmeter tells the operator if the filter needs cleaning, replacement of cartridges, or if there may be another problem, such as a tear in the filter material or a broken pipe.

    In the commercial swimming pool industry flowmeters are used to measure flow through the pool’s filtration system so operators and health inspectors, can easily verify an adequate amount of water is passing through that filtration system to ensure clean swim water.


    Be certain to check chemical compatibility. Don’t rely solely on compatibility charts, do your own testing. Many flowmeter manufacturers are willing to provide material sample kits so you can perform your compatibility test.

    Specific gravity (‘weight’) of the liquid through the flowmeters affects flowmeter reliability and accuracy. Viscosity, the degree to which a fluid resists flow under applied force, also affects accuracy, as do elevated temperatures.

    Accuracy & Repeatability

    Without a good working knowledge of what these terms mean in the real world you can easily overbuy, or under buy a Flowmeter. Avoid being misled by the various terminologies used in the flow industry. Flowmeter manufactures may simply say 2% accurate, you need to question that statement, 2% of what? 2% of the indicated flow, or 2% of the full scale? These two seemingly similar accuracies are actually quite different, and could be costing you extra money. Repeatability is different than accuracy and in some industries may be more important.

    Repeatability is the flowmeters’ ability to reproduce flow rates consistently under the same conditions. Repeatability is very important in the processing industry where tracking flow changes is so essential.

    In summary, it is best to have a clear understanding of your flow measurement requirements and if you’re uncertain what the best flowmeter for your application is, consult an expert who can provide friendly assistance and accurate information. Blue-White has a full staff of in-house engineers to provide the assistance you may require.

    Confessions of a Chemical Feed Pump Manufacturer

    If you are in the water conditioning or water treatment industry, manage a store, or are an installation professional, odds are excellent you know more than most about pumps. Here are a few things I’m fairly sure you didn’t know.

    Most adults own at least six pumps:

    1. Fuel pump
    2. Washing machine (water pump)
    3. Oil pump
    4. Vacuum cleaner
    5. Dishwasher (water pump)
    6. Air conditioner

    I’m sure I’ve left some out, but you get the point. Pumps are a very important part of nearly everyone’s lives. Below I’ve listed some historic information on pumps.

    Pumps are not a new technology – only the power used to drive pumps (and control) are new. Pumps date back to Alexandria (Greece) 100 BC; animals, yes-even humans, powered pumps.

    Christopher Columbus (1451–1509) used bilge pumps on his ships (pumps were made out of lead, with leather strips for flapper type check valves). It was written that he said “an efficient bilge pump was the most important piece of equipment on a ship”. I believe now we’ve established the historic aspect of pumps, it’s important we understand the basic classification of pumps.

    Today’s water conditioning & w/ treatment installations include one or more of the above pumps. Centrifugal pumps are used for pumping large amounts of water, of particular importance in water recirculation. Piston pumps are of importance in water reclamation, such as reverse osmosis systems, due to their very high pressure capability. Displacement style pumps (diaphragm, or peristaltic), is a common way to pump chlorine, or other water treatment chemicals, we know them as; chemical feed pumps, metering pumps, chlorinators or injection pumps.

    Now we’ve established the importance of pumps in our lives and in particular, the water conditioning & w/treatment industry, allow me to focus in on pumps used for chemical delivery in our industry. Although these pumps are properly called displacement, pumps (remember) both reciprocating diaphragm, and rotary peristaltic, in this article for diaphragm pumps I will use the name; chemical feed pump, the rotary peristaltic is often referred to as a tube, or squeeze tube pump, I’ll just use the name peristaltic pump.

    Now that we’ve covered some of the history, I’d like to share some of what I’ve picked up over the years. Working for a well-known chemical feed pump manufacturer for thirty-three years has taught me quite a lot. Some of what I have learned may be valuable to you, a water conditioning & treatment professional. I would like to clear up some myths, or assumptions I’ve been asked about from time to time.

    Do you as a manufacture build in planned obsolescence?

    Nothing could be further from the truth; to the point, the question is almost humorous. When a particular chemical feed pump is designed, there are countless kinds of destructive testing conducted. We deliberately try to cause the product to fail. Product improvements are an ongoing process that just never ends. When we force a breakdown, that particular part or area is redesigned until it’s corrected.

    Metering pumps should be trouble free.

    Of all your equipment you work with, the metering pump will require the most attention. The model you purchase is important, and the brand reliability, remember you are dealing with far more than a mechanical pump, you are dealing with; water chemistry (ph & chlorine levels, to name a few), the possibility of serious bacteria, water temperature & pressure, and a multitude of other factors. When you put them all together, there is far more involved than a chemical feed pump. The “perfect chemical feed pump” will not overcome a poor installation. If any of the above items are neglected your job will become infinitely more complicated.

    Which type of pump is better, peristaltic or diaphragm?Which type of pump is better, peristaltic or diaphragm?

    As a manufacturer of both I can tell you with some expertise they both have their strengths and weaknesses. I will also tell you there really is no definitive answer. It would be similar to asking what’s better a Jet pump or a Submersible pump? Peristaltic pumps are a bit easier for the novice, but if not maintained are far more problematic than diaphragm pumps. If you have a good working knowledge of diaphragm feed pumps, and understand the basics of maintaining check valves, this type pump is more cost efficient. I believe in choice, and I’ll let the market decide that question.


    Chlorine is on its way out.

    We have a Love/hate relationship with Chlorine. This is a case where the good definitely outweighs the not so good. Don’t even try to imagine our lives completely without chlorine as a disinfectant. Alternative forms of disinfectants play a larger role in our industry, and that is a good thing. However, make no mistake chlorine is still the disinfectant of choice in our industry, it simply works well and the cost benefit isn’t worth arguing.

    Most water conditioning & W/treatment professionals have their favorite type of chlorine. As a manufacturer, I do too. Let’s go over them. Liquid chlorine (sodium Hypochlorite) is usually purchased at your favorite dealer/distributor, or chemical company, some regions the chemical is delivered on a route basis. This industrial strength chlorine runs anywhere from 9% to 15% active chlorine. The chlorine you purchase at the supermarket is considerably weaker about 5% chlorine. Sodium hypochlorite, or liquid chlorine is the chemical of choice for most mechanical chlorinators, some will argue that point, but for the most part hands down its liquid chlorine. The problem with liquid chlorine is; it is heavy, cumbersome, and transporting it can be hazardous. Liquid chlorine weakens over time. Dry (chlorine) or calcium hypochlorite also has its advantages, and disadvantages. It is certainly easier to store and does have a longer shelf life. Some of the challenges are obvious; you have to mix slurry (dry chemical & water), so it can be pumped. The amount of undissolved solids will over time foul check valves, and plug injection fittings. Peristaltic pumps are recommended if you choose to pump chlorine slurry. Peristaltic pumps easily handle chlorine slurries, because they have no check valves.

    Some tips on maximizing the performance of your mechanical chemical feed pump (diaphragm, or peristaltic style)

    • Keep variables to a minimum. Such as, chlorine strength, type of chlorine used, and the feed rate setting on chemical feed pump. Example; if you keep the chlorine strength consistent, during the summer months, you’ll need to increase the amount of chlorine to be fed. On a peristaltic pump, adjust the on time up (pump longer), with a diaphragm pump increase the cam setting, or pulse rate. If you tamper with chlorine strength (usually a problem with slurries), and chlorinator feed rate, you will just drive yourself crazy. Minimize your variables.
    • Avoid running chemical container dry, while the pump may not be mechanically harmed, pumping air will cause the valves to build up a residue of dried chlorine (salt).
    • After changing out chemical containers make sure, the chemical feed pump is primed and most air is purged out of the pump head & discharge line.
    • At least every six months inspect, and if necessary, replace the diaphragm. Also, inspect the top and bottom valves; clean or replace. If you are using a peristaltic feeder, change pump tubes out regularly, Also keep your eye on the roller assembly; the rollers do require periodic lubrication, and replacement. Rollers that are frozen, not rolling correctly will dramatically shorten the life of the pump tube.
    • Keep spare liquid ends (assembled pump head kits) handy, as we all know Murphy’s Law, “Problems usually occur at the most inopportune times”, it’s far easier to replace a diaphragm and pump head assembly with valves (usually just 4 screws) than detailing every o-ring and ball seat. Using peristaltic pumps? keep pump tubes and roller assemblies on hand. Time is money.
    • Inspect the foot valve strainer quarterly, or as frequent as necessary.
    • Chemical feed pumps are easy to prime when the discharge (pressure) line is removed or vented. After the pump is primed re-attach the discharge line to the top pump head valve, or close the vent relief.
    • Keep the pump room clean & well ventilated – Too many pump rooms are a mess. The rooms should be neat & clean (not a storage area for junk) spare parts should be available at the site. An installation, instruction booklet should be mounted on the wall at or near the chemical feed pump, this will have a parts schematic complete with part numbers.
    • Always wear eye protection when working on chemical injectors or when changing out containers, or adding chemical. This is something that cannot be over stressed.
    • Avoid changing chemical brands without researching the compatibility regarding your chemical feed pumps.
    • A flow indicator installed on the suction tubing of your injector is an outstanding diagnostic tool, at a glance you can see if the pump is working properly. Some manufacturers offer them as standard equipment.
    • Never mix different chemicals in the same solution tank.
    • Never inject chlorine and pH adjusting chemicals near one another, always use caution.
    • Your Chemical feed pump must shut down when the water recirculation pump is not running. The chemical feed pump should operate in concert with the water pump, never by itself.
    • Chemical feed pumps – Double ball check valves just work better than single ball check valves.
    • The weakest side of a diaphragm chemical feed pump is the suction side (the ability to draw chemical), always keep your suction run as short as possible (5’ or less). Discharge runs are not as critical.
    • Most all warranty and out of warranty work is related to poor maintenance.
    • Peristaltic pumps have an amazing ability prime, up to 18’ (without discharge backpressure), it’s true, but please keep the suction run a short as possible.
    • Your pumps injection fitting is the single most neglected part of your system. When your injection fitting begins to clog, the chemical feed pump works harder & harder to overcome the blockage (sound familiar). Change or clean them regularly.
    • Peristaltic pumps – Are easier (more forgiving) to use, but if neglected could be a serious problem. Pump tubes need to be changed with regularity; many are not & eventually could leak corrosive chemicals. Changing a pump tube is not complicated, and just takes minutes.
    • Peristaltic pumps – Older peristaltic pumps benefit from changing out roller assemblies, as these rollers age (wear), slowly you lose critical squeeze tolerances and the pump gradually will lose the ability to inject chemical. Often the pump tube is blamed, but the problem is really the roller assembly.
    • Suction & discharge tubing needs to be replaced regularly. This is one area where I see widespread neglect. Tubing is available practically everywhere and is rather inexpensive.
    • Chemical controllers (pH, ORP & TDS) are of growing importance to our industry. This is an area you absolutely need to hire the most qualified, and service after the installation is an absolute. Most controllers work well with chemical feed pumps; Stick with the industry leaders, those controller companies with a proven track-record. Avoid elaborate so-called turnkey systems that claim to do everything. Caveat emptor.
    • There is no perfect chemical feed pump or system – No matter the cost or what you were led to believe. The success of a particular job, or system is directly related to the installer & quality of equipment, but most importantly how the equipment is installed & maintained. As a manufacturer, we do our best to manufacture the finest equipment, but we are only as good as those who do the installation, service & maintenance work.

    In summary, pumps have a very long history dating back 100 BC. Pumps are crucial to our lives, and particular importance to the water conditioning/treatment industry.

    Robin Gledhill, President
    Blue-White Industries
    Huntington Beach, CA, USA